
“Tight Mode”:
How Browsers REALLY

Load Web Pages
Robin Marx

@programmingart

“Tight Mode”:
How Browsers REALLY

Load Web Pages
Robin Marx

@programmingart

Tim Vereecke
(My colleague, giving talk next door)

Barry Pollard
(Google Dev Advocate)

The Network FetchPriority

Lazy loading
Async / Defer

103 Early Hints

Resource Hints
(preload, preconnect)

https://web.dev/articles/lcp-lazy-loading
https://x.com/rick_viscomi/status/1585248419701874688?s=20

https://make.wordpress.org/core/2021/07/15/refining-wordpress-cores-lazy-loading-implementation/

The Network FetchPriority

Lazy loading
Async / Defer

103 Early Hints

Resource Hints
(preload, preconnect)

Two-step waterfall

HTTP/1.1 is limited to 1 resource per connection

HTTP/1.1 is limited to 1 resource per connection

A ClownCar named Desire

HTTP/1.1 HTTP/2 and /3

HTTP/2 and /3 Multiplexing

HIGHEST
HIGHEST
HIGHEST

HIGH

LOW
LOW
LOW
LOW

MEDIUM
MEDIUM
MEDIUM

PRIORITY:

(HTTP/2) Servers often don’t listen to browsers…
Browser instructions:

https://github.com/andydavies/http2-prioritization-issues
https://www.researchgate.net/publication/347519865_Debugging_Modern_Web_Protocols

Terrible for Web
performance

(HTTP/2) Servers often don’t listen to browsers…
Browser instructions:

https://github.com/andydavies/http2-prioritization-issues
https://www.researchgate.net/publication/347519865_Debugging_Modern_Web_Protocols

High Priority JS
delayed

Highest Priority Fonts
delayed

Only 2 of these companies do it (100%) correctly…

https://jherbots.info/public_media/research/anrw2024_h3-eps-in-the-wild_authorversion.pdf

Two-step waterfall even with HTTP/2 and HTTP/3!

What if the BROWSER gets it wrong…

This should
actually be
down there
(or vice versa)

https://web.dev/articles/fetch-priority
https://imkev.dev/fetchpriority-opportunity

https://docs.google.com/document/d/1bCDuq9H1ih9iNjgzyAL0gpwNFiEP4TZS-YLRp_RuMlc

https://docs.google.com/document/d/1bCDuq9H1ih9iNjgzyAL0gpwNFiEP4TZS-YLRp_RuMlc

] Tight Mode

Priority: where stuff is in HTML and how it’s loaded

“Lower-priority”: medium + low + lowest

Actively delayed

2 HIGH js

10 LOW img

End of
tight mode

2 HIGH js

5 MEDIUM img

5 LOW img

End of
tight mode

Trying to improve LCP on the entire Web

Image (first 5
in body)

Actively delayed

Image (first 5
in body)

Actively delayed

Trying to improve LCP on the entire Web

2 HIGH js

5 MEDIUM img

5 LOW img

End of
tight mode

End of
tight mode

“Low priority resources are only loaded if
there are less than 2 in-flight requests”

2 HIGH js

5 MEDIUM img

5 LOW img

End of
tight mode

“After all blocking scripts
have been executed”

3 HIGHEST CSS

5 MEDIUM img

5 LOW img

2 HIGH JS

2 LOW JS

5 MEDIUM IMG

5 LOW IMG

What will the waterfall look like for this HTML?

2 HIGH JS

2 LOW JS

5 MEDIUM IMG

5 LOW IMG

2 HIGH JS

2 LOW JS

5 MEDIUM IMG

5 LOW IMG

images in the <body>
delay

defer JS in the <head>

No special
casing of

first 5
images

Max 2
things in

flight

CSS also
triggers

tight mode!

Blocking JS
or CSS delay
whatever’s

behind them

JS top
of <body>

JS bottom
of <body>

Blocking JS
or CSS delay
whatever’s

behind them

Some weird
heuristics at
work here…

JS middle
of <body>

What will the waterfall look like for this HTML?

Async/Defer
JS don’t

trigger tight
mode by

themselves,
but are

downloaded
in it

Exact same
HTML,

radically
different

behaviour

- While blocking JS in the <head> is busy
- Only LOW/LOWEST if fewer than 2 things in flight
- 2 MEDIUM at a time

While blocking JS or CSS ~anywhere is busy
- Only MEDIUM/LOW/LOWEST if fewer than 2 things in flight

- With the exception of async/defer JS, those always get requested asap

Tight mode

Firefox doesn’t do Tight Mode in HTTP/2 and /3

Exact same HTML,

radically different behaviour

How to fix wrong browser behaviour?

This should
actually be
down there
(or vice versa)

The Network FetchPriority

Lazy loading
Async / Defer

103 Early Hints

Resource Hints
(preload,
preconnect)

FetchPriority to the rescue!?

https://web.dev/fetch-priority

How to get stuff INTO tight mode?

fetchpriority=high

- Images
- Defer/Async JS
- JS on the bottom of the <body>

- Images

fetchpriority=
high

causes
image 5 to

load in tight
mode

image 5 is
requested

before
3 and 4

How to get stuff OUT OF tight mode?

fetchpriority=low

- First 5 images
- JS early and CSS late in <body>
- Preloaded fonts
- Preloaded async/defer JS

- NOTHING AT ALL?!?

Oh the Irony

https://bugzilla.mozilla.org/show_bug.cgi?id=1797715

How to get stuff INTO tight mode?

<link rel=preload src=lcp.jpg as=image />

How to get stuff INTO tight mode?

<link rel=preload src=lcp.jpg as=image />

Only 2
preloads fire
at the start,

other 4 don’t

Preload 6
images on

top

Basic tight mode
“2 low prio in flight
at the same time”

logic

Preload 6
images on

top

Preload doesn’t increase priority by itself

https://calendar.perfplanet.com/2022/http-3-prioritization-demystified/
https://bugs.chromium.org/p/chromium/issues/detail?id=1431169

Image preload actually
LOWERS

priority in Safari

You need fetchpriority=high for that

https://calendar.perfplanet.com/2022/http-3-prioritization-demystified/
https://bugs.chromium.org/p/chromium/issues/detail?id=1431169

Now they are
all requested
during tight

mode

Preload 6
images with
fetchpriority

=high

preload on top of <head> +
fetchpriority = high

= loaded before parser-blocking JS

preload on top of <head> +
fetchpriority = high

= loaded before parser-blocking JS

preload on bottom of <head> +
fetchpriority = high

= loaded after parser-blocking JS

preload on top of <head> +
fetchpriority = high

= loaded before parser-blocking JS

preload on bottom of <head> +
fetchpriority = high

= loaded after parser-blocking JS

FOOTGUN!?

preload on bottom of <head> +
fetchpriority = high

= loaded after parser-blocking JS

What will the waterfall look like for
?

preload on bottom of <head> +
fetchpriority = high

= loaded after parser-blocking JS

= loaded after parser-blocking JS

You (probably) don’t need a preload if the image is in the HTML

Preload should be applied
with surgical precision

https://web.dev/articles/preload-critical-assets

- Specific edge cases (you really
know what you’re doing)

- If the resource isn’t in the HTML
- Fonts
- Dynamic LCP images
- JS imports

NEXT.js preloading 13 JS files needed for future navigations

https://vercel.com

- 103 Early Hints
- Tight mode impact?
- Preloading responsive images?

- Why do font preloads need a crossorigin attribute?!?
- Except on Safari?!!?!!!
- Credentialed requests and CORS
- Connection coalescing

- Tight mode across connections: chrome vs safari
- LCP load delay vs render delay
- Tight mode impact for Speculation Rules API (prefetch/render)
- How much I hate browser devtools sometimes :)

Other topics I researched

Ask me about these sometime ;)

Conclusion

Network Performance isn’t the most impactful thing

If you’re loading 5MB of JavaScript
without a CDN, you have

bigger problems than just
tight mode messing up!

“
”

Robin Marx, WeLoveSpeed 2024

Exact same HTML,

radically different behaviour

“Chrome” Web Vitals

THANK YOU

Content Origin

Mapping

Capacity

Ghost

Products

Customer Config

DNS

Complexity

TLS

IPv4/6

H1/H2Regions

Baseline

Settings

Akamai

Origin
Connectivity

DNS

TLS

Keep-Alive

Customer

Via

SRTO

Application

RUM

Bots

Synthetic tests

Segment

Wrong A/B

Client

Low traffic

Scenario

Frequency

Locations

Realism

Analysis

Analysis

KPIs

KPIs

Analysis

Slowed down

Cacheable

Hotness

Structure

Returning

Landing page

Device/OS/UA

DNS

Time of day

Client
Connectivity

Connection

Geo

Customer Customer

How we measure What we measure THANK YOU

